Arterial remodeling in response to hypertension using a constituent-based model.

نویسندگان

  • Alkiviadis Tsamis
  • Nikos Stergiopulos
چکیده

Hypertension-induced arterial remodeling has been previously modeled using stress-driven remodeling rate equations in terms of global geometrical adaptation (Rachev A, Stergiopulos N, Meister JJ. Theoretical study of dynamics of arterial wall remodeling in response to changes in blood pressure. J Biomech 29: 635-642, 1996) and was extended later to include adaptation of material properties (Rachev A, Stergiopulos N, Meister JJ. A model for geometric and mechanical adaptation of arteries to sustained hypertension. J Biomech Eng 120: 9-17, 1998). These models, however, used a phenomenological strain energy function (SEF), the parameters of which do not bear a clear physiological meaning. Here, we extend the work of Rachev et al. (1998) by applying similar remodeling rate equations to a constituent-based SEF. The new SEF includes a statistical description for collagen engagement, and remodeling now affects material properties only through changes in the collagen engagement probability density function. The model predicts asymptotic wall thickening and unchanged deformed inner radius as to conserve hoop stress and intimal shear stress, respectively, at the final adapted hypertensive state. Mechanical adaptation serves to restore arterial compliance to control levels. Average circumferential stress-strain curves show that the material at the final adapted hypertensive state is softer than its normotensive counterpart. These findings as well as the predicted pressure-diameter curves are in good qualitative agreement with experimental data. The novelty in our findings is that biomechanical adaptation leading to maintenance of compliance at the hypertensive state can be perfectly achieved by appropriate readjustment of the collagen engagement profile alone.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metalloproteinases, Mechanical Factors and Vascular Remodeling

Chronic increases in arterial blood flow elicit an adaptive response of the arterial wall, leading to vessel enlargement and reduction in wall shear stress to physiological baseline value. Release of nitric oxide from endothelial cells exposed to excessive shear is a fundamental step in the remodeling process, and potentially triggers a cascade of events, including growth factor induction and m...

متن کامل

Effect of thoracic epidural blockade on hypoxia-induced pulmonary arterial hypertension in rats

Objective(s): The present study was aimed to investigate the influence of thoracic epidural blockade on hypoxia-induced pulmonary hypertension in rats. Materials and Methods: Forty eight Wistar rats were randomly divided into 4 equal groups, named normoxia hypoxia hypoxia/ ropivacaine and hypoxia/saline. Animals were placed in a hypoxia chamber and instrumented with epidural catheters at the t...

متن کامل

Amygdala centralis cardiovascular response to angiotensin I microinjection in Goldblatt hypertensive rats

Previous studies have shown that induction of 2kidney -1clip Goldblatt hypertension (2K-1C) induction in rats eliminates hypertensive response after inactivating of the central nucleus of the amygdale (ACe). The present study investigated the possibility of alteration in local renin angiotensin system (RAS) activity in ACe after hypertension induction. Clamps were placed on the left renal arter...

متن کامل

Amygdala centralis cardiovascular response to angiotensin I microinjection in Goldblatt hypertensive rats

Previous studies have shown that induction of 2kidney -1clip Goldblatt hypertension (2K-1C) induction in rats eliminates hypertensive response after inactivating of the central nucleus of the amygdale (ACe). The present study investigated the possibility of alteration in local renin angiotensin system (RAS) activity in ACe after hypertension induction. Clamps were placed on the left renal arter...

متن کامل

Chronic intermittent hypobaric hypoxia attenuates monocrotaline-induced pulmonary arterial hypertension via modulating inflammation and suppressing NF-κB /p38 pathway

Objective(s): Inflammation is involved in various forms of pulmonary arterial hypertension (PAH). Although the pathophysiology of PAH remains uncertain, NF-κB and p38 mitogen-activated protein kinase (p38 MAPK) has been reportedto be associated with many inflammatory mediators of PAH. This study aimed to evaluate the effect of chronic intermittent hypobaric hypoxia (CIHH) on pulmonary inflammat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 293 5  شماره 

صفحات  -

تاریخ انتشار 2007